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Abstract. Degeneracy of resonant states and double poles in the scattering matrix of a double
barrier potential are contrived by adjusting the parameters of the system. The cross section,
scattering wavefunction and Gamow eigenfunction are computed at degeneracy. Some general
properties of the degeneracy of resonances are exhibited and discussed in this simple quantum
system.

1. Introduction

In this paper, by means of a simple and elementary example, we will exhibit some characteristic
properties of the degeneracy of two resonant states and the concomitant occurrence of a complex
double pole in the S-matrix of a quantum system.

The problem of the degeneracy of resonances arises naturally in connection with the
Berry phase of resonant states [1–4]. In a previous paper, we have shown that accidental
degeneracies of resonant states mixed by a Hermitian interaction give rise to multiple poles
in the S-matrix [5]. More recently, a number of cases of interfering resonances leading to
degeneracy have been described. We considered a doublet of unbound states in 8Be as an
example of accidental degeneracy of resonances [6]. Vanroose et al [7] examined the formation
of complex double poles of the S-matrix in a two channel model with square well potentials.
Kylstra and Joachain [8,9] discussed double poles of the S-matrix in the case of laser-assisted
electron–atom scattering. Latinne et al [10, 11] studied degeneracies involving auto-ionizing
states in complex atoms. Lassila and Ruuskanen [12] pointed out that Stark mixing in an
atom can display double pole decay. Knight [13] examined the decay of Rabi oscillations in
a two level system with double poles. Double poles were investigated as examples of non-
exponential decay laws by Bell and Goebel [14] who proposed a one channel, double barrier
potential model and a Lee-type model of unstable particles as examples showing double poles.
The formal theory of multiple pole resonances and resonant states in the rigged Hilbert space
formulation of quantum mechanics was developed by Bohm et al [15] and Antoniou et al [16].

Here, we will discuss the formation of a series of doublets of interfering resonances in
the scattering of a beam of particles by a double barrier potential in the model of Bell and
Goebel [14]. It will be shown that degeneracies of resonant states and double poles of the S-
matrix may be brought about by simply adjusting the parameters of the system, i.e., the strength
and position of the two potential barriers. In the particular model discussed here, the double
poles lie very close to the real axis and can therefore readily be associated with well pronounced
resonances. We solve the degeneracy conditions numerically and compute the phase shift,
cross section, scattering wavefunction and the Gamow eigenfunction at degeneracy. We also
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present an approximate analytical solution of the degeneracy conditions which allows us to
discuss some properties of the complex energy hypersurfaces at degeneracy in parameter space.
Although the discussion is restricted to resonances in this rather schematic model of a potential
well with two regions of trapping, we will put emphasis on those characteristic properties of
the degeneracy of resonant states of a generic nature which are, in fact, independent of the
model.

2. Scattering by a double delta barrier potential

Doublets of resonances and accidental degeneracy of resonant states may occur in the scattering
of a beam of particles by a potential well with two regions of trapping. A simple example is
provided by two concentric spherical potential barriers which divide space into three regions:
an inner spherical cavity inside the first barrier, a second cavity comprised between the two
spherical barriers and the outer free space. In what follows, we will consider the conditions
for the occurrence of a degeneracy of two resonances in this simple system and some of the
properties of the Gamow eigenfunctions near and at a degeneracy of resonances. In order to
make the analysis as simple and explicit as possible, we take the potential barriers to be delta
functions.

The s-wave radial Schrödinger equation is

d2u(k, r)

dr2
+ k2u(k, r)−

(
π

α
δ(r − a) +

π

β
δ(r − b)

)
u(k, r) = 0. (1)

The external parameters of the system are the strength of the two potential barriers, π/α and
π/β, and the ratio b/a of the two barrier positions. The parameters α, β, a and b are real and
positive, we will take b > a.

The regular solution of (1) normalized to unit slope at the origin, φ(k, r), is as follows.
In the inner region, 0 � r � a,

φI (k, r) = 1

k
sin kr (2)

at r = a; φI (k, r) is continuous but its derivative is discontinuous:

φI (k, a) = φII (k, a) (3)(
dφII
dr

)
a

=
(

dφI
dr

)
a

+
π

α
φI (k, a). (4)

Hence, in the middle region, a � r � b,

φII (k, r) = 1

k

(
sin kr +

π

(kα)
sin ka sin k(r − a)

)
. (5)

At r = b, φ(k, r) satisfies continuity conditions similar to (4) with β in place of α. Hence, in
the outer region, for r � b, we obtain

φIII (k, r) = 1

k

{
sin kr +

π

kα
sin ka sin k(r − a)

+
π

kβ

[
sin kb +

π

kα
sin ka sin k(b − a)

]
sin k(r − b)

}
. (6)

The last expression may be written as a combination of an outgoing wave exp(ikr) and
an incoming wave exp(−ikr):

φIII (k, r) = i

2k
[f (−k) exp(−ikr)− f ∗(−k) exp(ikr)] (7)
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where

f (−k) = 1 +
π

kα
exp(ika) sin ka +

π

kβ
exp(ikb) sin kb +

π2

k2αβ
exp(ikb) sin ka sin k(b − a)

(8)

is the Jost function and f ∗(−k) = f (k).
The scattering wavefunction, ψ(k, r), is the solution of (1) which vanishes at the origin

and, for values of r larger than the range of the potential, behaves as the sum of a free incoming
spherical wave of unit incoming flux plus a free outgoing spherical wave. The coefficient of
the outgoing spherical wave is the scattering matrix S(k):

ψ(k, 0) = 0 (9)

and

lim
r→∞{ψ(k, r)− [exp(−ikr)− S(k) exp(ikr)]} = 0. (10)

Hence, the scattering wavefunction ψ(k, r) and the regular solution φ(k, r) are related by

ψ(k, r) = −2ik

f (−k)φ(k, r) (11)

and the scattering matrix is given by

S(k) = f ∗(−k)
f (−k) = exp(i2δ(k)) (12)

where the Jost function f (−k) is given by (8). The phase shift δ(k) may be written as

δ(k) = − tan−1

(N
D

)
(13)

where

N = π

kα
sin2 ka +

π

kβ
sin2 kb +

π2

k2αβ
sin ka sin kb sin k(b − a)

and

D = 1+
π

kα
sin ka cos ka+

π

kβ
sin kb cos kb+

π2

k2αβ
sin ka cos kb sin k(b − a).

The cross section σ0

σ0 = 4π

k2
sin2 δ(k) (14)

is readily computed from (12)–(14); see figure 1.

3. Resonances and resonant states

The zeros of the Jost function

f (−kn) = 1 +
π

knα
sin kna exp(ikna) +

π

knβ
sin knb exp(iknb)

+
π2

k2
nαβ

sin kna sin kn(b − a) exp(iknb) = 0 (15)

give poles in the scattering matrix S(k).
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Figure 1. The scattering cross section σ0(k) for α = 0.05, β = 0.1 and b = 1.95 (α, β, and b are
measured in units of a, k is measured in units of a−1). A series of doublets of narrow resonances,
centred at k ∼= nπ, n = 1, 2, 3, . . . , is apparent. Off resonance, the wide bumps in the cross section
are typical of hard sphere scattering.

Resonant or Gamow eigenfunctions, un(kn, r), are the solutions of (1) which vanish at the
origin and behave as purely outgoing spherical waves for values of r larger than the range of
the potential:

un(kn, 0) = 0 (16)

and

lim
r→∞

[
dun(kn, r)

dr
− iknun(kn, r)

]
= 0 (17)

where kn is a complex solution of (15) with Re kn > 0 and Im kn < 0.
From (7), (15) and (17), the Gamow eigenfuctions un(kn, r) and the regular solution

φ(k, r) are related by

un(kn, r) = 2iknNn

f (kn)
φ(kn, r) (18)

where Nn is a normalization constant. Then, in the inner region, 0 � r � a, the Gamow
eigenfunction is

u(I)n (kn, r) = Nn sin knr; (19)

in the middle region, a � r � b,

u(II)n (kn, r) = Nn

(
sin knr +

π

knα
sin kna sin kn(r − a)

)
; (20)

and in the outer region, b � r < ∞,

u(III)n (kn, r) = Nn

(
sin knb +

π

knα
sin kna sin kn(b − a)

)
exp(−iknb) exp(iknr). (21)
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4. Doublets of resonances

The condition for resonances to occur, equation (15), may be rewritten as
(
k +

π

α
exp(ika) sin ka

) (
k +

π

β
exp(ik(b − a)) sin k(b − a)

)
(22)

−ik
π

2β
exp(i2k(b − a))(exp(i2ka)− 1) = 0.

When the second term in the left-hand side of equation (22) is very small,∣∣∣∣kπ2β exp(i2k(b − a))(exp(i2ka)− 1)

∣∣∣∣ ≈ 0 (23)

the two trapping regions are weakly coupled. Then, the resonances in the double barrier
potential occur as if the two cavities were resonating (almost) independently of each other.
The condition (23) is satisfied when

ka ≈ π + u (24)

with

|u| � 1 (25)

and

π2a

β
|u| � 1. (26)

The two cavities resonate in unison if both factors in the first term in the left-hand side
of (22) are also very small for the same values of the parameters.

Computing the first factor in the left-hand side of (22) to leading order in u, gives

ka +
πa

α
exp ika sin ka ≈ π +

(
1 +

πa

α

)
u + i

πa

α
u2. (27)

The resonance condition for the first cavity, i.e. the vanishing of (27), gives u in terms of
α:

u ≈ −α

a

π

π + α
a

. (28)

Then, the inequalities (25) and (26) become

0 <
α

a
<

β

aπ2
� 1. (29)

Therefore, the condition (23) is satisfied when the inner shell potential at r = a is very
strongly repulsive and the outer shell potential at r = b is also strongly repulsive but less so
than the inner one. Then, the two cavities resonate almost independently of each other, and
the first cavity resonates at

ka ≈ π − α

a

π

π + α
a

− i
α

a

π2

π + α
a

. (30)

If we want the two cavities to resonate at the same wavenumber, it should be possible
to accommodate about the same number of half-wavelengths in each cavity, which may be
accomplished if the radial dimensions are similar, that is, if

b

a
− = 1 − x (31)
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with

|x| � 1. (32)

The magnitude of x may be estimated from the resonance condition for the second cavity.
Computing the second factor in the first term in the left-hand side of (22) to leading order in
α/a and x, we obtain:

ka +
ka

β
exp ika

(
b

a
− 1

)
sin ka

(
b

a
− 1

)
≈

(
1 − α

β

)
π

π + α
a

− πa + β

β
x. (33)

The resonance condition for the second cavity, i.e. the vanishing of (33), gives

x ≈ β − α

a(π + β

a
)
. (34)

Once we have an order of magnitude estimate for x, we may estimate the resonance
wavenumber of the second cavity. From (31),

k(b − a) = ka(−x) (35)

when the two cavities resonate in unison, ka and x are given by (30) and (34) respectively.
Then, the second cavity will resonate at

k(b − a) ≈ π − β

a

π

π + β

a

− i
β

a

π2

π + β

a

. (36)

Therefore, when the inner shell potential is very strongly repulsive, the outer shell potential
is also strongly repulsive but less so than the inner one and the radial dimensions of the two
cavities are such that they may accommodate about the same number of half-wavelengths; the
inner cavity will resonate at

kna ≈ nπ − n
α

a

π

π + α
a

− in
α

a

π2

π + α
a

+ · · · n = 1, 2, 3, . . . (37)

and the outer cavity will resonate at

kn′(b − a) ≈ n′π − n′ β
a

π

π + β

a

− in′ β
a

π2

π + β

a

+ · · · n′ = 1, 2, 3, . . . . (38)

Hence, when (23), (29) and (34) are satisfied, we have an infinite series of doublets of
resonances.

The most extreme instance of closely spaced resonances is that of an exact coincidence
of two resonances, that is, of a double pole in the scattering matrix. Consider, for example,
the first doublet of resonances, n = n′ = 1. If we want the two cavities to resonate exactly
at the same wavenumber, one needs to match exactly both the real and imaginary parts of the
corresponding resonance wavenumbers. In the following section, it will be shown that small
changes in at least two parameters will allow us to tune the two trapping regions so that they
will resonate in unison; see figures 2 and 3.

5. Accidental degeneracy of resonances

When the Jost function f (−k) has a double zero at k̃, the scattering matrix S(k) has a double
pole at k = k̃. Hence, the condition for the occurrence of a degeneracy of two resonances is
that both the Jost function f (−k) and its first derivative df (−k)/dk vanish at k̃. From (8),
these conditions become

k̃

(
k̃ +

π

β
exp(ik̃b) sin k̃b

)
+
π

α
exp(ik̃a) sin k̃a

[
k̃ +

π

β
exp(ik̃(b − a)) sin k̃(b − a)

]
= 0

(39)
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Figure 2. Degeneracy of the first doublet of resonances is brought about at k̃ = 3.136 507 668 −
i0.005 062 929 by fine tuning the parameters of the system to the values α = 0.005 077 3229, β =
0.101 86 and b = 1.968 008 257 74. At the double pole degeneracy, the cross section has a narrow
split peak.
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Figure 3. The absolute value squared of the Gamow eigenfunction belonging to the double pole
(exact degeneracy) as a function of r . The full curve is the amplitude squared of the wave in the
inner region, 0 � r/a � 1. The dashed curve is the amplitude squared of the wave in the middle
region, 1 � r/a � 1.968 008 257 74. The short-dashed line is the amplitude squared of the wave
in the outer, free space, region; the exponential growth of the amplitude in this region is so slow
that it is not apparent in the figure.
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and

2k̃ +
π

β
exp(ik̃b) sin k̃b + k̃

π

β
b exp(i2k̃b)

+
π

α
exp(ik̃a) sin k̃a

[
1 +

π

β
(b − a) exp(ik̃2(b − a))

]

+
π

α
a exp(i2k̃a)

[
π

β
exp(ik̃(b − a)) sin k̃(b − a) + k̃

]
= 0. (40)

We have a system of two coupled independent equations with three real, independent
parameters, α/a, β/a and b/a, whose values should be adjusted to satisfy (39) and (40). The
coupled equations (39) and (40) were solved numerically. In the numerical computation, length
was measured in units of a and the wavenumber k was measured in units of a−1. Accordingly,
in the following, we will write α, β, b, kn and k̃ instead of α/a, β/a, b/a, kna and k̃a. Starting
from the values α = 0.005, β = 0.1 and b = 1.968, we find the first doublet at

k1 = 3.135 170 − i0.002 981

k1′ = 3.139 813 − i0.006 802.
(41)

By fine tuning the parameters to the values α = 0.005 077 3229, β = 0.101 86 and
b = 1.968 008 257 74, the first doublet becomes degenerate, with a precision better than
one part in 108, at

k̃ = 3.136 507 668 − i0.005 062 929. (42)

In the case of a one-channel problem with a short-ranged, local potential and fixed angular
momentum, as the example we are considering here, the solution of the radial equation (1),
which vanishes at the origin and behaves as a purely outgoing wave at distances larger
than the range of the potential, is unique up to a multiplying constant. In other words, for
each given set of values of the external parameters (X1, X2, . . . Xn) there is one and only
one Gamow eigenfunction un(kn, r) associated to each complex wavenumber eigenvalue kn.
When we move in parameter space from the point (X1, X2, . . . Xn) where all eigenvalues
are different to a point (X∗

1, X
∗
2, . . . X

∗
n),where two eigenvalues, say k1 and k1′ , are equal,

the corresponding Gamow eigenfunctions u1(k1, r) and u1′(k1′ , r) go to a common limit
u1̃(k̃, r). Hence, at degeneracy, there is only one normal mode, the Gamow eigenfunction
u1̃(k̃, r), associated to the repeated (degenerate) eigenvalue k̃; see figure 3. However, another,
linearly independent, generalized eigenfunction or abnormal mode is provided by the same
limiting process that gives rise to the degeneracy. As we move in parameter space from the
point (X1, X2, . . . Xn) to the degeneracy point (X∗

1, X
∗
2, . . . X

∗
n), the difference of the two

eigenvalues that become degenerate vanish, and the difference of the corresponding Gamow
eigenfunctions also vanish. Then, by continuity of k1(X1, X2, . . . Xn) and k1′(X1, X2, . . . Xn)

at the common limit k̃(X∗
1, X

∗
2, . . . X

∗
n), the derivative of the Gamow eigenfunction with respect

to the wavenumber eigenvalue exists:

v1̃(k̃, r) =
(

du1(k1, r)

dk1

)
k̃

= lim
|k1′ −k1|→0

u1′(k1′ , r)− u1(k1, r)

k1′ − k1
. (43)

The generalized Gamow eigenfunction, also called Jordan–Gamow eigenfunction, is

û1̃(k̃, r) = du1̃(k̃, r)

dk̃
+ c(k̃)u1̃(k̃, r) (44)

where c(k̃) is a function of k̃ but is independent of r . The generalized Gamow eigenfunction
û1̃(k̃, r) is a solution of the inhomogeneous equation

d2û1̃(k̃, r)

dr2
+ k̃2û1̃(k̃, r)−

(
π

α
δ(r − a) +

π

β
δ(r − b)

)
û1̃(k̃, r) = −2k̃u1̃(k̃, r) (45)
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Figure 4. The split peak resonance characteristic of a double pole in the scattering amplitude. At
k̃res = 3.135 98, the cross section vanishes and the scattering wavefunction, ψ(k, r), in the inner
cavity attains its maximum amplitude. Note the enlarged scale in the abscissa.

obtained from (1) taking the derivative with respect to the eigenvalue k. The Jordan–Gamow
eigenfunction û1̃(k̃, r) satisfies the same boundary conditions as the Gamow eigenfunction,
that is, it vanishes at the origin and behaves as a purely outgoing wave at distances larger than
the range of the potential.

At degeneracy, the number of dimensions of the subspace of eigenfunctions or geometric
multiplicity of the degeneracy is smaller than the number of repeated eigenvalues or algebraic
multiplicity of the degeneracy. The Gamow eigenfunction and the generalized Gamow
eigenfunction form a Jordan cycle of generalized eigenfunctions of length two [17]. These
generic properties of a degeneracy of two complex energy eigenvalues and the corresponding
Gamow eigenfunctions of the time independent radial Schrödinger operator are also realized at
the exceptional points of the spectrum of a self-adjoint Hamiltonian perturbed by a Hermitian
interaction with one complex coupling parameter, discussed by Kato [18] and Heiss [19] in
connection with the avoided level crossings of bound states.

5.1. Cross section and phase shift at degeneracy

At the resonance degeneracy, the cross section has a characteristic split peak. The splitting
occurs because right at the middle of the degenerate resonance, the phase shift goes through
π and the cross section vanishes; see figures 4 and 5.

5.2. The scattering wavefunction

When k is far from any resonance value, the scattering wavefunction, ψ(k, r), is a slowly
varying function of k. As a function of r , it is very small inside the outer cavity and it is
extremely small inside the inner cavity. The scattering is almost pure hard sphere scattering
due to the incoming wave bouncing off the outer delta shell potential barrier without being
able to penetrate; see figure 6.
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Figure 5. The characteristic sharp increase by 2π of the phase shift δ(k), as a function of k,
produced by a double resonance pole in the scattering amplitude. At the centre of the double pole
resonance, k̃ = 3.135 98, the phase shift goes through π .
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Figure 6. The scattering wavefunction, ψ(k, r), as a function of r , evaluated at k = 2.9 on the
low energy side of the double pole resonance. In the inner region, the amplitude of the scattering
wavefunction is extremely small and is very small in the middle region. Most of the wave bounces
off the outer delta shell potential.

Close to a degeneracy of resonances, when k changes from the low energy side to the high
energy side of the degenerate resonance value, the scattering wavefunction, ψ(k, r), changes
very rapidly with k. At first, as k approaches the resonance value k̃res from below, ψ(k, r)
grows rapidly in the outer cavity and a small wave begins to be perceptible in the inner cavity;
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Figure 7. At k = 3.11, closer to the double pole resonance, the scattering wavefunction, ψ(k, r),
as a function of r , grows in the middle region and a small wave begins to be perceptible in the inner
region. Note the change of scale in the ordinate.

see figure 7. As k increases, the amplitude of the wave in the inner cavity increases and the
amplitude of the wave in the outer cavity decreases, until the wave in the two cavities resonate
with the same amplitude at k = 3.131 44; see figure 8. A further increase in k, at k = 3.1365,
slightly above the centre of the double resonance, will make the inner cavity resonate at full
amplitude while the outer cavity is completely quiet; see figure 9. When k goes to values
larger than k̃res = 3.135 98, the amplitude of the wave in the inner cavity decreases while the
amplitude of the wave in the outer cavity increases again. As k grows even larger the wave in
the inner cavity becomes extremely small and the wave in the outer cavity decreases to very
small values; see figures 10 and 11.

6. Accidental degeneracy of resonances in parameter space

6.1. The condition for degeneracy

An approximate analytical solution of the condition for degeneracy of two resonances, that is
for the occurrence of a double pole in the scattering matrix S(k), equations (39) and (40), may
easily be found. When the condition (23) is satisfied, the two resonant poles corresponding
to the first doublet of resonances are close to k0a ≈ π . Hence, it will be convenient to define
new variables δ and ε through the equations:

ka = π + δ (46)

k(b − a) = π + δ + ε. (47)

As in the previous section, to simplify the notation, length will be measured in units of a
and k will be measured in units of a−1, then a = 1, α/a = α and β/a = β.

We will make α and ε functions of β:

α = X(β) = X0β
2 + O(β3) (48)

ε + β = −2Z(β) = −2Z0β
2 + O(β3) (49)
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Figure 8. The scattering wavefunction, ψ(k, r), as a function of r at k = 3.131 44, slightly below
the centre of the double pole resonance. The two cavities resonate with equal amplitude. Note the
change of scale in the ordinate.
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Figure 9. At k = 3.1365, slightly above the centre of the double pole resonance, the inner cavity
resonates at full amplitude while the outer cavity is completely quiet.

where X0 and Z0 are two, free real parameters of order one. Now, we will look for
an approximate solution of the conditions of degeneracy, equations (39) and (40), when
δ = (k − π) is of order β2, for small β.

We substitute the expressions (46) and (47) in (39) and (40) and obtain a new set of
equations with the arguments of exponential and trigonometric functions written in terms of
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Figure 10. At k = 3.139, on the high energy side of the double pole resonance, the amplitude
of the scattering wavefunction, ψ(k, r), in the inner cavity decreases, while in the outer cavity it
increases again.
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Figure 11. The scattering wavefunction, ψ(k, r), as a function of r , evaluated at k = 5.5, on the
high energy side of the double pole resonance. In the inner region, the wavefunction is extremely
small and, in the middle region, it has a very small amplitude. Most of the wave bounces off the
outer shell potential. Note the change of scale in the ordinate.

the small parameters δ and ε. According to (48) and (49), for β small, α and ε are also small.
Linearizing the exponentials and trigonometric functions and neglecting terms of order β5, the
resonance condition, equation (39), becomes:
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k2 + 2[−(π − α) + 1
2 (ε + β)− i 1

2βε]k

+[π(π − ε)− (2π − ε)α − β(π − α)(1 − iε)] = 0. (50)

The two roots of this equation give the (approximate) positions of the two resonance poles
corresponding to the first doublet of resonances in the fourth quadrant of the complex k-plane:

k1,2 = π − (X(β)− Z(β))− i (β) + ±
√

[(X2(β) + Z2(β))− 1
4 

2(β)] − iZ(β) z(β)

(51)

where  z(β) = β2,  x = 0 and X(β) and Z(β) were defined in (48) and (49).
Now, we define R2

0 = X2
0 +Z2

0 and tan θ = X0/Z0, then setting R0 = 1
2 and θ = 1

2π,
3
2π ,

the term under the square root vanishes and the two roots of (40) coincide. Within the
approximations stated above, this result clearly indicates that by adjusting the parameters
of the system, we can indeed arrange for the two zeros of the Jost function to coincide and
produce one double pole of S(k) at k̃:

k̃ = π − 1
2β

2 − i 1
2β

2 + O(β3). (52)

This approximate analytical solution and the numerical computation presented in the previous
section indicate that the degenerate resonances of the S(k)matrix of the scattering by a double
delta barrier potential may be brought about by adjusting the parameters of the system.

Note that:

(1) The positions of the poles in the complex plane are functions of three independent
parameters. Therefore, in general, the geometric loci of the poles in the k-plane are
not lines (trajectories) but two-dimensional regions.

(2) By making α and b or ε functions of β, we force the poles to move in well defined
trajectories when β changes. If the functions α = X(β) and − 1

2 (ε + β) = Z(β) are
properly chosen, the two trajectories cross and the two poles coincide at the crossing
where a double pole of S(k) is produced.

(3) In general, the position of the double pole in the k-plane is not fixed. In the example just
discussed, when β changes the double pole moves on a trajectory which starts at k0 = π

as a diagonal line with slope −1 and goes down into the fourth quadrant of the complex
k-plane.

7. Resonance degeneracy in parameter space

If the first two zeros of the Jost function are factored out, the scattering matrix takes the form

S(k) = S
(res)
I (k) exp(i2δB(k)) (53)

where δB(k) is the background phase shift due to the hard sphere scattering and the contribution
of the far away resonances. S(res)

I (k) is the resonating part of S(k) due to the first doublet of
resonances

S
(res)
I (k) = (k − k∗

1)(k − k∗
2)

(k − k1)(k − k2)
(54)

where k1 and k2 are the positions of the first two poles corresponding to the first doublet of
resonances.

The analytical properties of S(res)
I (k) as a function of the external parameters α, β and b

(or X,Z and  z) may be brought out by rewriting S(res)
I (k) as

S
(res)
I (k) = 1 − iW

1

[k12×2 − K]
W† (55)
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where

K = K − i 1
2 W†W (56)

and

K =
(
π −X + 2Z X

X π −X

)
(57)

W†W =
√

2 

(
1 0
0 0

)
. (58)

In (55), the matrix [k12×2 − K]−1 plays the role of an effective propagator. The 2 × 1 row
matrix W is the matrix of the decay amplitudes which couples the elastic channel to the first
two resonant states. The form of the anti-Hermitian part of K ensures the unitarity of S(res)

I (k).
The poles of S(res)

I (k) are the eigenvalues of K.
It is convenient to write K in terms of the Pauli matrix valued vector (σx, σy, σz) as

K = ( 1
2 tr K)12×2 + ( �R − i 1

2
� ) · �σ (59)

where �R and � are real vectors with Cartesian components (X, 0, Z) and (0, 0,  z).
Then, the eigenvalues of K are given by

k1,2 = 1
2 tr K ±

√
( �R − i 1

2
� )2. (60)

The eigenvalues k1 and k2 coincide when the term under the square root vanishes. Since
real and imaginary parts should vanish, we get the pair of equations

R2
d − 1

4 
2
d = 0 �Rd · � d = 0. (61)

To produce a degeneracy of resonant eigenenergies, the two linearly independent
conditions, (61), should be satisfied for non-vanishing values of �R and � (non-vanishing
values ofX,Z, and  z). Therefore, at least two real independent parameters should be varied.

The degeneracy conditions, equations (61), define a circle of radius 1
2 d in a plane

orthogonal to the vector � d , in parameter space. Since the parameter space of the problem
under consideration has only two effective dimensions and the ‘circle’ is in the one-dimensional
subspace OX orthogonal to OZ, the circle reduces to two points. In the approximation of
equations (48), (49) and (51), the Cartesian coordinates of these two points are Xod = ± 1

2 ,
and Zod = 0.

Since the degeneracy conditions, equations (61), are satisfied for non-vanishing values of
�Rd and � d , the matrix ( �Rd − i 1

2
� d) · �σ does not vanish at degeneracy, and the matrix Kd is not

diagonal at degeneracy.
In the approximations of (48), (49) and (51), Kd becomes

Kd = k̃12×2 + 1
2β

2

( −i 1
1 i

)
. (62)

The matrix Kd may be brought to a Jordan canonical form [17] by means of a similarity
transformation

M−1 Kd M = 'd =
(
k̃ 0
1 k̃

)
(63)

with

M =
(

1 −i
0 1

)
. (64)
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Off degeneracy, (k1 �= k2), the matrix K may be brought to diagonal form by means of
another similarity transformation

N−1KN = ' =
(
k1 0
0 k2

)
k1 �= k2. (65)

At degeneracy ', as a function of the parameters X, Z and  z, is discontinuous, it jumps
to the Jordan canonical form (63), and the similarity transformation N is singular. Hence,
the spectral representation ∆ of K is not appropriate to discuss the geometric properties of
the hypersurfaces which represent the complex eigenvalues k1 and k2 in parameter space.
In contrast, the matrix K is a continuous function of the parameters X,Z and  including
those points where K becomes degenerate (the diabolical circle). This property makes the
representation of S(res)(k) defined in equations (55)–(58) adequate to discuss the degeneracy
of two resonances in terms of the geometric properties of the hypersurfaces which represent
k1 and k2 in parameter space [5].

8. Conclusions

In the above sections, we found that double poles can indeed occur in a simple model of
the scattering of a beam of particles by a potential well with two regions of trapping. More
precisely, we showed that double poles of the scattering matrix of a double barrier potential may
be contrived by adjusting the parameters of the system. We solved the degeneracy conditions
numerically and computed the phase shift, cross section, scattering wavefunction and the
Gamow eigenfunction at degeneracy. We also found an approximate analytical solution of the
degeneracy conditions and discussed some properties of the complex energy hypersurfaces at
degeneracy in parameter space.

In conclusion, some general properties of a degeneracy of resonances were explicitly
exhibited in a simple model of the scattering of a beam of particles by a potential well with
two regions of trapping. Among these properties, it is worth mentioning the following:

(i) The minimum number of free, real, independent parameters that should be varied to
produce a degeneracy of resonances is two, independent of the time reversal character of
the interaction.

(ii) At degeneracy two complex energy eigenvalues are equal and associated with only one
Gamow eigenfunction. Completeness of the set of complex energy eigenfunctions requires
another independent solution, the generalized energy eigenfunction or Jordan–Gamow
eigenfunction. Hence, the double pole of the scattering matrix is associated with two
degrees of freedom: the Gamow eigenfunction, or normal mode, and the generalized
Jordan–Gamow eigenfunction, or abnormal mode.

(iii) The number of dimensions of the subspace of eigenfunctions associated to the degenerate
complex energy eigenvalue or geometric multiplicity of the degeneracy is smaller than
the number of repeated eigenvalues or algebraic multiplicity of the degeneracy. The
Gamow eigenfunction and the generalized Jordan–Gamow eigenfunction form a cycle of
generalized eigenfunctions of length two which is associated to a Jordan canonical form
of rank two [17].

(iv) At an accidental degeneracy of resonances, neighbouring complex energy hypersurfaces
are connected at two points in parameter space, in contrast with the single conical point
typical of a degeneracy of bound states.

We end our paper with a last comment: in the absence of symmetry, degeneracies are
called accidental for lack of an obvious reason to explain why two energy eigenvalues, E1 and
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E2, of a typical Hamiltonian should coincide [20]. In this paper, by means of an elementary
example, we have pointed out that, when the Hamiltonian and the Jost function depend on at
least two real, independent ‘control’ parameters, and the conditions for degeneracy are made
explicit in terms of these parameters, a degeneracy of resonances may be brought about by
simply adjusting the control parameters of the system so as to satisfy the degeneracy conditions.
When this situation is realized, degeneracies of resonances are, in fact, not accidental even if
at degeneracy no symmetry of the system arises, as is usually the case for bound states.
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References

[1] Pont M, Potvliege R M, Shakeshaft R and Smith P H G 1992 Phys. Rev. A 46 555
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